Journal Article


Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming

Abstract

The acoustic streaming behaviour below an ultrasonic sonotrode in water was predicted by numerical simulation and validated by experimental studies. The flow was calculated by solving the transient Reynolds-Averaged Navier-Stokes equations with a source term representing ultrasonic excitation implemented from the predictions of a nonlinear acoustic model. Comparisons with the measured flow field from Particle Image Velocimetry (PIV) water experiments revealed good agreement in both velocity magnitude and direction at two power settings, supporting the validity of the model for acoustic streaming in the presence of cavitating bubbles. Turbulent features measured by PIV were also recovered by the model. The model was then applied to the technologically important area of ultrasonic treatment of liquid aluminium, to achieve the prediction of acoustic streaming for the very first time that accounts for nonlinear pressure propagation in the presence of acoustic cavitation in the melt. Simulations show a strong dependence of the acoustic streaming flow direction on the cavitating bubble volume fraction, reflecting PIV observations. This has implications for the technological use of ultrasound in liquid metal processing.

Attached files

Authors

Lebon, G.S. Bruno
Tzanakis, Iakovos
Pericleous, Koulis
Eskin, Dmitry
Grant, Patrick S.

Oxford Brookes departments

Faculty of Technology, Design and Environment\School of Engineering, Computing and Mathematics

Dates

Year of publication: 2019
Date of RADAR deposit: 2019-02-19


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License


Related resources

This RADAR resource is the Version of Record of Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming

Details

  • Owner: Joseph Ripp
  • Collection: Outputs
  • Version: 1 (show all)
  • Status: Live
  • Views (since Sept 2022): 476