Energy systems in most countries distribute electricity over centralized networks using primarily carbon intensive fossil fuels. For energy system to become decarbonised and decentralised to meet climate targets, large-scale application of distributed energy resources (DERs) that provide low carbon heating and electricity will be necessary. This paper uses a domestic energy mapping approach to baseline energy use and target appropriate dwellings for the application of DERs (heat pumps, rooftop solar, batteries) in five existing neighbourhoods (each comprising 200-450 dwellings) located in five council districts in Oxfordshire (UK). The dwellings are assessed using a bottom -up energy model called DECoRuM combined with a GIS-based approach to spatially map results. The results show that rooftop solar installation potential ranges widely depending on neighbourhood; between 1%-9% of dwellings can take up installations of 4kWp size and above, with an average size of 2.1 kWp, resulting in average energy reductions ranging from 69%-77%. The proposed approach can enable local authorities, community energy project developers and district network operators to extract local spatial intelligence rapidly and accurately for large -scale deployment of distributed energy resources. This can avoid expensive reinforcement of the local electricity networks.
Gupta, Rajat Gregg, Matt
School of Architecture
Year of publication: 2022Date of RADAR deposit: 2023-06-01
All rights reserved.