Journal Article


Robust higher order potentials for enforcing label consistency

Abstract

This paper proposes a novel framework for labelling problems which is able to combine multiple segmentations in a principled manner. Our method is based on higher order conditional random fields and uses potentials defined on sets of pixels (image segments) generated using unsupervised segmentation algorithms. These potentials enforce label consistency in image regions and can be seen as a generalization of the commonly used pairwise contrast sensitive smoothness potentials. The higher order potential functions used in our framework take the form of the Robust Pn model and are more general than the Pn Potts model proposed recently in [3]. We prove that the optimal swap and expansion moves for energy functions composed of these potentials can be computed by solving a st-mincut problem. This enables the use of powerful graph cut based move making algorithms for performing inference in the framework. We test our method on the problem of multi-class object segmentation by augmenting the conventional CRF used for object segmentation with higher order potentials defined on image regions. Experiments on challenging data sets show that integration of higher order potentials quantitatively and qualitatively improves results leading to much better definition of object boundaries. We believe that this method can be used to yield similar improvements for many other labelling problems.

Attached files

Authors

Kohli, P
Ladicky, L
Torr, P H

Oxford Brookes departments

Faculty of Technology, Design and Environment\Department of Computing and Communication Technologies

Dates

Year of publication: 2009
Date of RADAR deposit: 2010-05-25



Related resources

This RADAR resource is a version of Robust higher order potentials for enforcing label consistency Article has an altmetric score of 6

Details

  • Owner: Unknown user
  • Collection: Outputs
  • Version: 1 (show all)
  • Status: Live
  • Views (since Sept 2022): 147