Journal Article


Numerical-physical modelling of the long jump flight of female athletes : impact of jump style, hairstyle and clothing

Abstract

The long jump is a track and field event in which the athlete sprints down a runway and tries to leap as far as possible from a take-off line. To the best of our knowledge, there are no published studies on the aerodynamic impact of jump style, hairstyle and clothing on the long jump distance. This paper presents a numerical-physical model of the long jump flight. It allows to predict flight distance and the impact of jump style, hairstyle and clothing. It consists of five submodels: an existing model of the sprint before take-off, a computational fluid dynamics (CFD) model of different body postures in flight, a set of physical wind tunnel models for CFD validation, a full-scale wind tunnel manikin with different hairstyles and clothing and a numerical model of the flight trajectory. Jump style only impacts flight distance by 1 cm or less. Hairstyle and clothing however can cause drag to vary by more than 25% and flight distance by more than 10 cm, mostly by impacting the take-off speed. In the long term, long jump events might see the introduction of hair caps and low-drag clothing to reduce aerodynamic resistance and level the playing field.

Attached files

Authors

Blocken, Bert
Malizia, Fabio
Laguna, Philippe
Marshall, David
Bell, Daniel
Marchal, Thierry

Oxford Brookes departments

School of Engineering, Computing and Mathematics

Dates

Year of publication: 2024
Date of RADAR deposit: 2024-10-08


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License


Related resources

This RADAR resource is Identical to Numerical-physical modelling of the long jump flight of female athletes: Impact of jump style, hairstyle and clothing

Details

  • Owner: Joseph Ripp
  • Collection: Outputs
  • Version: 1 (show all)
  • Status: Live
  • Views (since Sept 2022): 114