Journal Article

Energy modelling and analytics in the built environment: A review of their role for energy transitions in the construction sector


Decarbonisation and efficiency goals set as a response to global warming issue require appropriate decision-making strategies to promote an effective and timely change in energy systems. Conceptualization of change is a relevant part of energy transitions research today, which aims at enabling radical shifts compatible with societal functions and market mechanisms. In this framework, construction sector can play a relevant role because of its energy and environmental impact. There is, however, the need to move from general instances to specific actions. Open data and open science, digitalization and building data interoperability, together with innovative business models could represent enabling factors to accelerate the process of change. For this reason, built environment research has to address the co-evolution of technologies and human behaviour and the analytical methods used for this purpose should be empirically grounded, transparent, scalable and consistent across different temporal/spatial scales of analysis. These features could potentially enable the emergence of “ecosystems” of applications that, in turn, could translate into projects, products and services for energy transitions in the built environment, proposing innovative business models that can stimulate market competitiveness. For these reasons, in this paper we organize our analysis according to three levels, from general concepts to specific issues. In the first level, we consider the role of building energy modelling at multiple scales. In the second level, we focus on harmonization of methods for energy performance analysis. Finally, in the third level, we consider emerging concepts such as energy flexibility and occupant-centric energy modelling, considering their relation to monitoring systems and automation. The goal of this research is to evaluate the current state of the art and identify key concepts that can encourage further research, addressing both human and technological factors that influence energy performance of buildings.

Attached files


Manfren, Massimiliano
Sibilla, Maurizio
Tronchin, Lamberto

Oxford Brookes departments

School of the Built Environment


Year of publication: 2021
Date of RADAR deposit: 2021-02-01

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License

Related resources

This RADAR resource is Identical to Energy modelling and analytics in the built environment: A review of their role for energy transitions in the construction sector


  • Owner: Joseph Ripp
  • Collection: Outputs
  • Version: 1 (show all)
  • Status: Live
  • Views (since Sept 2022): 267