Journal Article

Improving the accuracy of convolutional neural networks by ddentifying and removing outlier images in datasets using t-SNE


In the field of supervised machine learning, the quality of a classifier model is directly correlated with the quality of the data that is used to train the model. The presence of unwanted outliers in the data could significantly reduce the accuracy of a model or, even worse, result in a biased model leading to an inaccurate classification. Identifying the presence of outliers and eliminating them is, therefore, crucial for building good quality training datasets. Pre-processing procedures for dealing with missing and outlier data, commonly known as feature engineering, are standard practice in machine learning problems. They help to make better assumptions about the data and also prepare datasets in a way that best expose the underlying problem to the machine learning algorithms. In this work, we propose a multistage method for detecting and removing outliers in high-dimensional data. Our proposed method is based on utilising a technique called t-distributed stochastic neighbour embedding (t-SNE) to reduce high-dimensional map of features into a lower, two-dimensional, probability density distribution and then use a simple descriptive statistical method called interquartile range (IQR) to identifying any outlier values from the density distribution of the features. t-SNE is a machine learning algorithm and a nonlinear dimensionality reduction technique well-suited for embedding high-dimensional data for visualisation in a low-dimensional space of two or three dimensions. We applied this method on a dataset containing images for training a convolutional neural network model (ConvNet) for an image classification problem. The dataset contains four different classes of images: three classes contain defects in construction (mould, stain, and paint deterioration) and a no-defect class (normal). We used the transfer learning technique to modify a pre-trained VGG-16 model. We used this model as a feature extractor and as a benchmark to evaluate our method. We have shown that, when using this method, we can identify and remove the outlier images in the dataset. After removing the outlier images from the dataset and re-training the VGG-16 model, the results have also shown that the accuracy of the classification has significantly improved and the number of misclassified cases has also dropped. While many feature engineering techniques for handling missing and outlier data are common in predictive machine learning problems involving numerical or categorical data, there is little work on developing techniques for handling outliers in high-dimensional data which can be used to improve the quality of machine learning problems involving images such as ConvNet models for image classification and object detection problems.

Attached files


Perez, Husein
Tah, Joseph H.M.

Oxford Brookes departments

School of the Built Environment


Year of publication: 2020
Date of RADAR deposit: 2020-04-27

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License

Related resources

This RADAR resource is Identical to Improving the accuracy of convolutional neural networks by ddentifying and removing outlier images in datasets using t-SNE


  • Owner: Joseph Ripp
  • Collection: Outputs
  • Version: 1 (show all)
  • Status: Live
  • Views (since Sept 2022): 283