From social interaction to ethical AI: a developmental roadmap

This Conference paper or proceeding is part of Staff Publications

An Open Access version of this publication is not currently available from RADAR

The item has not yet been published. It was accepted for publication in 07/2018

Manuscript details


AI and robot ethics have recently gained a lot of attention because adaptive machines are increasingly involved in ethically sensitive scenarios and cause incidents of public outcry. Much of the debate has been focused on achieving highest moral standards in handling ethical dilemmas on which not even humans can agree, which indicates that the wrong questions are being asked. We suggest to address this ethics debate strictly through the lens of what behavior seems socially acceptable, rather than idealistically ethical. Learning such behavior puts the debate into the very heart of developmental robotics. This paper poses a roadmap of computational and experimental questions to address the development of socially acceptable machines. We emphasize the need for social reward mechanisms and learning architectures that integrate these while reaching beyond limitations of plain reinforcement learning agents. We suggest to use the metaphor of “needs” to bridge rewards and higher level abstractions such as goals for both communication and action generation in a social context. We then suggest a series of experimental questions and possible platforms and paradigms to guide future research in the area.


Matthias Rolf
Nigel Crook
Jochen Steil


Faculty of Technology, Design and Environment

Version of record


Rolf, M., Crook, N. and Steil, J. (no date) 'From social interaction to ethical AI: a developmental roadmap', Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics. Tokyo, Japan, 16-20 September. IEEE