Journal Article

Design of a low-current shunt-feedback transimpedance amplifier with inherent loop-stability


In this paper we propose a new architecture for enhancing the performance of a transimpedance amplifier used for low-currents, and in particular, that used in biosensing. It is usually the first block in biomedical acquisition systems for converting a current in the nanoampere and picoampere range into a proportional voltage, with an amplitude suitable for further processing. There exist two main amplifier topologies for achieving this, current-mode and shunt-feedback mode. This paper introduces a shunt-feedback amplifier that embodies current-mode operation and thereby offers the advantages of both existing schemes. A conventional shunt-feedback amplifier has a number of stages and requires compensation components to achieve stability of the feedback loop. The exemplary circuit described is inherently stable because a high gain is effectively achieved in one stage that has a dominant pole controlling the frequency response. Exhibiting complementary symmetry, the configuration has an input port that is very close to earth potential. This enables the configuration to handle bidirectional input signals such are as met with in electrochemical ampero-metric biosensors. For the 0.35 µm process adopted and ± 3.3 V rail supplies, the power dissipation is 330 µW. With a transimpedance gain of 120 dBΩ the incremental input and output resistances are less than 2 Ω and the − 3 dB bandwidth for non-optical input currents is 8.2 MHz. The input referred noise current is 3.5 pA/√Hz.

Attached files


Mathew, M.
Hart, Bryan L.
Hayatleh, Khaled

Oxford Brookes departments

Faculty of Technology, Design and Environment\School of Engineering, Computing and Mathematics


Year of publication: 2019
Date of RADAR deposit: 2019-03-18

“Copyright © 2019, Springer Nature. Users may view, print, copy, download and text and data-mine the content, for the purposes of academic research, subject always to the full conditions of use. Any further use is subject to permission from Springer Nature.”

Related resources

This RADAR resource is the Accepted Manuscript of Design of a low-current shunt-feedback transimpedance amplifier with inherent loop-stability


  • Owner: Daniel Croft
  • Collection: Outputs
  • Version: 1 (show all)
  • Status: Live